Contents

Preface i
Acknowledgements ii
About the CD-Rom iii

1 Introduction

1.1 Steps in the Finite Element Analysis Process 1-3
1.2 Library of Element types 1-4
1.3 Overview of ANSYS Workbench 1-5
1.4 Advantages of Using Finite Element Analysis 1-7
1.5 Historical Development 1-7
1.6 Scope of Book 1-8
Exercises 1-8

2 Stiffness Matrices

2.1 One-dimensional Spring Element 2-1
2.2 A Single Spring Element 2-2
2.3 Assembling the Total Structure’s Stiffness Matrix 2-3
2.4 Boundary Conditions 2-6
2.5 Summary 2-8
Exercises 2-8

3 Introduction to Workbench

3.1 Starting Workbench 3-1
3.1.1 The Start Window 3-2
3.2 The Project Page 3-4
3.3 Saving Your Work 3-6
3.4 Common Interface Features 3-6
3.4.1 Selecting Model Entities 3-7
3.4.2 Manipulating Model Entities 3-7
3.4.3 Window Manager Features 3-8
3.5 Material Properties 3-9
3.6 Customizing The Workbench Interface 3-11
3.6.1 Orientation of the Sketching Plane in DesignModeler 3-11
3.6.2 Disabling the Map of Analysis Types 3-12
Exercises 3-13

4 Using DesignModeler to Create 3D Solid Geometry

4.1 Introduction to 3D Modeling 4-1
4.2 Introduction to DesignModeler 4-3
4.2.1 Sketching Plane Orientation 4-5
Contents

4.3 Tutorial 4_1 Rectangular Extrusion 4-6
4.4 Tutorial 4_2 Revolved Extrusion 4-14
4.5 Tutorial 4_3 3D Bracket with Hole 4-23
4.6 Additional Topics Exercises 4-32 4-33

5 Using DesignModeler to Create Surface and Line Geometry

5.1 Surface and Line Bodies Defined 5-1
5.2 Tutorial 5_1 2D Surface Model (surface from sketch) 5-2
5.3 Tutorial 5_2 Creating a Surface Patch for Loads and Boundary Conditions 5-4
5.4 Tutorial 5_3 Creating a Surface Model by Extruding Lines 5-6
5.5 Tutorial 5_4 3D Line Model Exercises 5-8 5-11

6 Introduction to Finite Element Simulation

6.1 Steps Required to Solve a Problem 6-2
6.2 Tutorial 6_1 4"x1"x1" 3D Cantilevered Beam Exercises 6-3 6-18

7 Using the Wizards

7.1 Introduction to Simulation Wizards 7-1
7.2 Map of Analysis Types 7-2
7.3 Wizards Supplied with Workbench 7-2
7.4 Tutorial 7_1 Stress Analysis Using the Stress Wizard 7-4

8 Modeling Techniques

8.1 Meshing 8-1
8.2 Aspect Ratio and Badly Shaped Elements 8-3
8.3 Mesh Refinement in Workbench 8-4
8.4 Relevance 8-4
8.5 Convergence 8-6
8.6 Tutorial 8_1 Using Convergence to Improve the Results 8-7
8.7 Supports 8-15
8.8 Loads 8-18
8.9 Application of Loads and Supports 8-20
8.10 Example Model That Illustrates How Supports and Loads Are Applied 8-21
8.11 Use of Symmetry Exercises 8-22 8-23

9 3D Solid Element Modeling & Simulation Techniques

9.1 3D Element Capabilities and Limitations 9-2
9.2 Stress Results 9-2
9.3 Modeling Techniques 9-3
9.4 Tutorial 9_1 Importing a 3D Bracket from IGES file 9-3
9.5 Stress Concentrations 9-13
9.6 Hex Dominate Meshing Exercises 9-14 9-15
10 Plane Stress/Strain Modeling & Simulation Techniques
10.1 Plane Stress/Strain Models in Workbench 10-1
10.2 Axisymmetric Models in Workbench 10-2
10.3 Plane Stress/Strain and Axis. Element Capabilities and Limitations 10-3
10.4 Defining Plane Stress/Strain and Axis. Models in Workbench 10-4
10.5 Loads and Boundary Conditions 10-5
10.6 Stress Results 10-6
10.7 Tutorial 10_1 Plate with Hole under Tension 10-6
10.8 Tutorial 10_2 Pressure Vessel 10-13
Exercises 10-20

11 Plate and Shell Element Modeling
11.1 Modeling Techniques 11-1
11.2 Creating the Finite Element Mesh 11-3
11.3 Tutorial 11_1 Thin Bracket 11-4
Exercises 11-13

12 Natural Frequency and Mode Shapes Analysis
12.1 Free Vibration, One degree of Freedom System 12-2
12.2 Multiple Degrees of Freedom 12-3
12.3 Manual Calculations of Beam Vibrations 12-6
12.4 Finite Element Modal Analysis 12-7
12.5 Modeling Techniques 12-8
12.6 Tutorial 14_1 Modal Analysis of a Cantilevered Beam 12-8
Exercises 12-14

13 Steady-state Heat Transfer
13.1 Fundamentals of Heat Transfer 13-1
13.2 Element Equations for One-Dimensional Conduction 13-4
13.3 Modeling Considerations 13-7
13.4 Application of Thermal Loads and Boundary Conditions 13-8
13.5 Tutorial 13_1 Conduction Through a Plane Wall with Heat Source 13-10
13.6 Tutorial 13_2 Air Cooled Heat Sink 13-17
Exercises 13-22

14 Finite Element Analysis for engineers
14.1 Interpreting Your Results 14-2
14.2 Theories of Failure 14-3
14.3 Absolute Versus Comparative Answers 14-4
14.4 Rules to Live By 14-5

Appendix A Matrices and Simultaneous Equations A-1
Appendix B Matrix Operations Using Excel B-1
Index