Visit the following websites to learn more about this book:

- SDC Publications
- Amazon.com
- Barnes & Noble
- Google Books
Lesson 4
Revit Materials:

Organizing and documenting materials is an important task for the interior design professional. This involves developing material collections/systems for spaces, understanding products being specified (and material options available for them), building code constraints (e.g., flame spread ratings), cost, availability and much more. Autodesk® Revit® allows much of this to be managed within the BIM database. This chapter will cover the basics, and be applied to our Law Office project.

Exercise 4-1:
Introduction to Using Materials in Revit

In Revit, a Material is more than just something you can touch or hold in your hand. It is a “container” which helps to keep track of the following:

- **Identity** settings
 - Descriptive Information
 - Product Information
 - Annotation Information

- **Graphics** settings
 - Shading
 - Surface Pattern and color
 - Cut Pattern and color

- **Appearance** asset
 - Photo-realistic render appearance
 - Texture
 - Reflectivity
 - Transparency
 - Self-Illumination
 - Etc.

- **Physical** asset
 - Structural engineering data
 - Concrete
 - Steel
 - Aluminum
 - Wood

- **Thermal** asset
 - Energy modeling data
 - Thermal Conductivity
 - Specific Heat
 - Etc.
In Revit, a single named item called a *Material* holds all of this information. We will discuss each of the items listed above in more detail, but first let’s talk about how a *Material* is used.

FYI: Anytime a Revit term or tool is mentioned in this book it is title-case and italicized. This helps the reader to distinguish a software term, such as *Material*, from a design industry term such as *material*.

There are three primary ways in which a *Material* is used, or applied, in a model:

- **By Category**
- **By Element**
- **By Face**

Each of these will be discussed in detail in a moment, but first notice the three walls below. The left wall segment has a light color and 4” tile pattern applied *By Category*. The middle wall has a light color with a brick pattern *By Element*. The last wall has a solid darker color painted on a single face (*By Face*).

By Category

When a 3D element does not have a specific *Material* applied, the project-wide *Object Style* is used, accessed by this dialog: *Manage ➔ Settings ➔ Object Styles*.

In Figure 4-1.1, notice the various categories listed: Furniture, Casework, Doors, etc. These are hard-wired categories Revit uses to organize elements, control visibility, and in the case of this discussion, controls how elements look. Each category may be assigned a default *Material*. When a 3D element has its *Material* parameter set to *<By Category>* , the *Object Style Material* is used.

It is often not too important to set the *Material* here because each 3D element often has a *Material* assigned to it, which takes precedent over *Object Styles*. For example, the pedestal sink shown to the right has a “Sink – Porcelain” and a “Sink – Faucet” material assigned directly to
the various 3D elements contained within the Family (i.e., component). Therefore the Plumbing Fixture Material in Object Styles is ignored. It might be best to set the Object Styles materials to an unusual color to draw attention to any element which does not have a specific Material selected in your project.

![Figure 4-1.1 Object Styles dialog](image)

By Element

The most common way a Material is applied to something is By Element. This is true for System Families and Loadable Families. Note the following:

- **System Families** (walls, ceilings, floors, etc.):
 These elements cannot exist outside of a project, therefore the Material adjustment option is built into the dialog box which is used to develop the assembly, the Edit Assembly dialog box, an example is shown on the next page.

- **Loadable Families** (furniture, casework, specialty equipment, doors, etc.):
 These are Families which are developed in the Family Editor environment. Every 3D element in a Family has a Material parameter. When the item is first created, the Material parameter is set to **By Category**. This parameter is usually changed in one of two ways:
- **Picking a Material**
 When a *Material* is selected directly, it is basically hard-wired and cannot be changed in the project.

- **Mapping to a Material Parameter**
 When a *Material Parameter* is employed, the *Material* can easily be changed in the project; this can be an *Instance* or *Type* parameter.

We will expand on this to help clarify the concept. Some of this information might be difficult to understand when one first begins using Revit. However, it is best to quickly read through this information now and then plan on referring back here to help fill in the gaps as needed.

The *Edit Assembly* dialog, shown to the left (Figure 4-1.2), highlights how the *Material* selection is built into the workflow for developing an assembly (i.e., *System Family*), a wall in this case. This is all done directly in the project environment.

The *Edit Assembly* dialog is similar for the other *System Families* such as Floor, Roof and Ceiling.

Next we will look at a simple chair family (Figure 4-1.3) which comes with the Revit Architecture software. We will see how three *Materials* have been utilized in this *Family*, but only two are selectable in the project.

The *Family* is: *Chair-Tablet Arm.rfa*, and can be found here: `C:\ProgramData\Autodesk\RVT 2014\Libraries\US Imperial\Furniture\Seating`

FYI: If you are using Revit Architecture swap RVT with RAC in the path above.

If we load this chair into a project, we can observe a few things about it. You may try this in Revit while reading, but is not required. First, if the chair is selected, you can click the *Edit Type* button, on the *Properties Palette*, to view the *Type Properties*.
Notice the two Material Parameters: **Seat/Back Material** and **Tablet Material** (Figure 4-1.4). These can both be changed to another Material by clicking in the Value field and selecting the small button that appears to the right. This opens the Materials dialog, from which another Material can be selected or created.

FYI: By changing a Type Parameter, every chair of this type within the project will be instantly updated.

![Type Properties dialog]

Figure 4-1.4 Type Properties for tablet arm chair

However, unlike the seat/back rest and tablet surface, the chair legs and back support Materials are not directly changeable in the project. There is a specific Material in use, and it appears in the Material dialog, but the Material used for the legs/back rest cannot be changed in the project – only in the Family Editor.

By Face

The third way in which a Material is typically applied is by using the **Paint** tool, which adds a Material to a single face. This feature has some limitations in the context of a pure BIM project.

The **Paint** tool is used on System Families, such as Walls, Floors, Ceilings, etc. The following description of how the tool is used is meant to be superficial and does not need to be done in a Revit file at this time. The Paint tool is selected on the Modify tab, a Material is selected from a dialog that appears, and then individual faces are selected.

The image to the right (Figure 4-1.5), shows a wall with three of the six faces visible from this vantage point. Thus, using the Paint tool you can only change the surface Material of these three faces. You would need to change the view of the wall to override the other faces.

![Paint tool and wall]

Figure 4-1.5 Three faces of wall visible in this view
view. For example, an interior elevation might be of a wall common to a corridor, or hallway. Revit will paint the entire side of the corridor wall, not just the portion visible in the specific room you are in (Figure 4-1.6A & 16B).

Revit does provide a way to constrain the area, or extents, of a Material to be painted on a face. This is accomplished using the **Split Face** tool, found adjacent to the **Paint** tool on the **Modify** tab. When the **Split Face** tool is selected, you select a surface and then Revit enters sketch mode; here you draw lines, which are constrained to the plane of the surface. These lines must define an enclosed area.
The image below (Figure 4-1.7) shows the *Split Face* tool used to define the entire wall in room number one, between the demising walls and up to the ceiling. The *Split Face* was also used to define the wainscot finish in room number 2. Note that the same corridor wall has two separately defined areas using the *Split Face* tool.

![Figure 4-1.7](image1.png)

FIGURE 4-1.7
Split Face tool used to constrain painted areas

In the image below, the *Split Face* and *Paint* tools were used to define an area for the accent band and wall base (Figure 4-1.8). Everything in this image is created by the reader, which consists of: Shaw flooring, Toto plumbing fixtures, and Dal Tile.

![Figure 4-1.8](image2.png)

FIGURE 4-1.8 Toilet room created by reader later in this textbook
This section will take a closer look at the Revit Material itself. Here you will gain a better understanding of what information, both textual and graphical, is contained within any given Material.

Exercise 4-2:
A Detailed Look at Revit Materials

As mentioned in the previous section, a Material in Revit is a “container” which holds information about the various materials used in the project. Some of the information contained in a Material is used prior to construction for visualization and documentation and some can be used during Construction Administration and after for Facilities Management.

To explore the Materials in a project, most of which come from the project template, click the Materials button on the Manage tab.

You will see the Materials dialog shown below (Figure 4-2.1).

![Materials dialog](image)
ARROW #1: Clicking the drop-down list, pointed out with the #1 arrow, in Figure 4-2.1 allows you to switch the material list to just be text rather than a preview (see also Figure 4-2.2). This adjustment allows you to see more items in the limited space.

ARROW #2: Clicking this icon will toggle the visibility of the external materials library. The advantage of not having the external library visible is that you can see more of the materials in your project.

ARROW #3: If the Material Browser dialog is not fully expanded you need to click the icon pointed out with the #3 arrow to see the selected material’s properties.

We will now take a close look at the various aspects of the Material dialog. It is a good idea to review this information closely now and refer back when needed. Having a good understanding of this fundamental feature will benefit the interior designer substantially. It is not necessary to follow along yet; if you do, it is recommended you do not save. The next exercise will have several steps which will be done in a project to apply what is presented in this section.

In the Materials dialogs (Figure 4-2.1), notice the list of Materials on the left side of the screen.

This list can be sorted in three ways:

- Material usage state
- Search words
- Classification

Selecting by the drop-down list (#1, Figure 4-2.2), allows you to narrow the list down to just Materials used in the project, or not used. The default is Show All, so both used and not used appear in the list; you would normally want to see both.

FIGURE 4-2.2 Sort by Material usage state
Word search allows you to enter a term by which the *Materials* list is filtered. The image to the right (Figure 4-2.3) filters the *Materials* list down to any *Material* or *Category* containing the word “wood”.

A combination of the two can be used to further filter the list down, and quickly get to the information you need. Notice in Figure 4-2.4A, the list is sorted by the word “tile” and for unused materials in the current project.

It is also possible to sort the materials by a built-in parameter called **Class**. Clicking the drop-down arrow pointed out in Figure 4-2.4B gives you the list to choose from. All of the Autodesk materials have a value entered for *Class* (e.g. Glass, Paint, Wood). When creating a material you can select from a *Class* value previously entered in the project or enter a value of your own.

To wrap up the discussion on the list of *Materials*, when you right-click on a Material name, you can **Duplicate**, **Rename** and **Delete** materials as seen in Figure 4-2.5. Also, at the bottom of the *Material Browser* dialog, a small icon allows one to create a new *Material* in addition to duplicating an existing one.
Now that you understand the mechanics of the Materials list itself, you will take a look at the information contained within each Material. The information seen on the right half of the Material Browser dialog, under the tabs, is based on which material is selected in the Project Materials list on the left. If the material browser is not fully expanded, click the small icon in the lower right corner of the Material Browser, looks like two arrows pointing to the right.

- **Identity tab**

 With the first Material selected in the Project Materials list on the left, Acoustic Ceiling Tile 24" x 24", notice the Identity options available in (Figure 4-2.6).

 o **Descriptive Information**
 This is an area to expound upon the material name to help the design team understand what this material is, or is used for.

 o **Product Information**
 Who makes this material, for how much and where can I find more information? You can enter this information here. For example, you might have a Material which represents a specific fabric, which is applied to a Haworth or Steelcase furniture Family. The parameters for the furniture Family will list the furniture manufacturer; Haworth or Steelcase in this example. But the Material applied within the furniture Family is tracking the fabric information.

 o **Revit Annotation Information**
 It is possible to add Smart text with optional arrows, which is called a Tag (see example on page 10-2), in a drawing view to report information about a specific Material. If the information changes, the Tag will update automatically. You will learn more about keynoting later in this book.
• **Graphics tab**

 The information found on the *Graphics* tab primarily relates to how the various *Materials* appear on screen and how they print on paper, or in a PDF. This closely relates to the development of the *Construction Document (CD)* deliverables. The image shown below still relates to the Acoustic Ceiling Tile (ACT) *Material*. (Figure 4-2.7)

 ▪ **Shading**

 This is the solid color used on-screen when the *Visual Style* is set to *Shaded* or *Consistent Colors* (see Page 2-15 for *Visual Styles* examples).

 The *Transparency* setting is used to make certain objects see-through. This applies to all of the *Visual Styles*. The most common application of this feature is on glass.

 The color set for *Shading* is not used in any way for photo-realistic renderings. This color can be derived from the information specified for renderings by checking the *Use Render Appearance* option; more on this soon.

 ▪ **Surface Pattern (and Color)**

 When a *Surface Pattern* is selected, Revit will display this pattern anytime an object’s surface is visible in a view. For example, if the ACT *Material* is applied to a ceiling element, the 24" x 24" pattern will be applied to it in the *Ceiling Plan View* and any 3D views. See the next page for an example.

 ▪ **Cut Pattern (and Color)**

 When a *Cut Pattern* is selected, Revit will display this pattern within the boundary of an object, if that object is being cut within the view. Objects will typically be cut in section and detail views. A *Floor Plan* has a horizontal cut plane at about 3’-6” above the level. So most elements which pass through this cut plane have the *Cut Pattern* shown. The most common example would be walls. See the next page for an example.
Overview of how Surface and Cut patterns are used in a Revit model:

The three views shown on this page are used to illustrate how surface and cut patterns, as defined within a Material, are applied to model elements. See the next page for more detailed notes on these images.
FLOOR PLAN EXAMPLE:
Looking at the previous page, the floor plan example shows a *Cut Pattern* within the walls and a *Surface Pattern* on the floor. The 8’-0” tall walls extend up through the 3’-6” cut plane. Therefore, for the *Material* applied to the wall, the *Cut Pattern* specified is shown. The floor exists entirely below the 3’-6” cut plane, so we are seeing its surface; therefore the material’s *Surface Pattern* is applied. Refer back to Exercise 1-1 (*Views* discussion starting on pg. 1-8) for an overview on how the *Cut Plane* interacts with the model.

ELEVATION/SECTION EXAMPLE:
In this example, the floor and the wall on the right are in section (see the section line in Figure 4-2.8). The wall with the window is not being cut, rather is seen in elevation, or projection. Note, the two walls are the same type (i.e. 8” Masonry), and use the same *Material*. Therefore, the wall’s *Material: Cut Pattern* is shown in the portion of wall in section and its *Material: Surface Pattern* is shown for the wall in elevation/projection. The floor is made up of multiple layers, and the larger part which represents the structure does not have a *Cut Pattern* selected in the *Material* being used, it is set to “<none>”. Thus, the floor does not have a *Fill Pattern* shown when in section. Final note, even though the glass has a transparent material, it does not show up transparent in elevation and section views; only 3D views as you will see in the next example. This is because we typically don’t want extra “clutter” showing up within the windows and doors. As you can see, no part of the tree appears within the window.

3D VIEW EXAMPLE:
In this view everything is in elevation/projection, so the surface pattern is used for the applied *Material*. Note: the walls and floor appear to be cut, but that is just the way they were modeled for this example. In 3D views, the transparency is applied to the element so the tree is visible through the window.

Here are a few more points about patterns used in Materials:

- **Surface and Cut Patterns Optional:**
 Keep in mind that *Surface* and *Cut patterns* are optional. In large commercial projects it is often undesirable to see a floor pattern as the drawing gets too cluttered with notes, dimensions and tags. In building sections the ceiling is not really thick enough for a pattern to show, so the model is more efficient when these extra lines are not all being generated in a given view.

- **Pattern Scale:**
 This topic will be covered in more detail later, but is worth pointing out at this juncture. There are two types of *Fill Patterns* in Revit: *Model* and *Drafting*. *Model Patterns* typically represent actual materials such as ceiling tile, concrete block (CMU) and brick to name a few. *Drafting Patterns* symbolically represent a material, thus the density of the pattern changes with the *View Scale* to help improve clarity (in a
similar way that text and dimensions adjust with the view’s scale). The example below (Figure 4-2.9) shows the same 12” concrete wall in section. Notice how the density of the Drafting Pattern changes when the View Scale is adjusted.

FYI: Notice that the line weights also change when the View’s View Scale changes. Larger scales have lighter line weights because they are view closer.

![Figure 4-2.9 Drafting patterns automatically adjust size with view scale](image)

• Appearance Asset
 The settings in this tab only come into play in one of two ways:

 1) Visual Style is set to Realistic or Ray Trace for the current view
 2) When doing a Rendering

 Otherwise, the way an element appears in Revit is controlled by the settings on the Graphics tab, unless otherwise overridden.

 o Photo-realistic render appearance
 Different types of appearance assets have unique options. For example, paint has an Application setting where you can select Roller, Brush, or Spray; compare Figures 4-2.10 and Figure 4-2.11.

![Figure 4-2.10 Material Browser: Appearance tab](image)
When creating materials it is important to use the correct asset-type. Notice in the image to the right (Figure 4-2.11) that is specifically indicates “Wall Paint” and the previous image for the ACT indicated “Generic”. The use of Generic should be used as little as possible. When Revit knows what the material is, e.g. it is not Generic, the renderings are more realistic.

With many Appearance Asset you can specify a raster image file (i.e., texture) to be used to fill or cover a surface during a rendering. This can be an actual photo of a material or a simulation. The main thing is the image needs to be tileable. This means when the image is copied over and up, to fill a surface, the edges of the image will not be apparent. See the two examples below (Figures 4-2.12 and 4-2.13).

![Image file](image1)

FIGURE 4-2.12 Tileable image; ideal for rendering

![Image applied to surface](image2)

FIGURE 4-2.13 Non-Tileable image; bad for rendering
When the image of the material is used by a given *Appearance Asset*, clicking on it opens another dialog box, the *Texture Editor*, where you can adjust how the image is applied to the surface and align it with the fill pattern (Figure 4-2.14). In the *Texture Editor*, if a setting does not have a check in the box, it is not considered in the appearance. Many of the settings are self-explanatory and can be quickly tested by adjusting the values to see how it impacts the preview and rendering.

It is important to pay attention to the dimensions listed. Notice the 16'-0" by 16'-0" dimensions in the example. Dividing this dimension by the number of tiles visible in the image tells use each tile will be 2'-0"; which is correct. However, if we download an image file from a manufacturer's website we will want to make sure to verify the number of tiles has not changed. If it did, we would have to adjust the scale values.

- **Physical Asset**
 The *Physical* tab is primarily used by the structural engineer to manage the structural properties for concrete, steel, aluminum and wood. This information can be used in structural analysis programs. When this information is not applicable, the *Asset* can be deleted from the *Material*.

 The example shown to the left is for the *Aluminum Material*. The *Strength* section can be expanded to reveal additional information. (Figure 4-2.15) Notice the *Replace, Duplicate and Delete* icons in the upper right.
• **Thermal Asset**
The *Thermal* aspect of a *Material* is used in energy modeling calculations (Figure 4-2.16). The basics are computed directly within Revit, such as the R-Value and Thermal Mass of a wall or floor (Figure 4-2.17). More advanced calculations can be derived in external applications.

FYI: Deleting all the Thermal assets from your *Materials* will cause the calculated values, shown in Figure 4-2.17, to be blank.

It should be pointed out that the values shown are provided by Revit for many standard real-world materials. The average software user is not expected to know this information. However, once a *Physical* or *Thermal* asset is loaded into a project, a person knowledgeable in the area of structural design or energy modeling can make adjustments to these values if needed. An example might be a special new type of rigid insulation which has a higher R value. Therefore, the energy modeling expert can adjust the values for this known condition.
Duplicating a Material and its assets:
It is important to know how to properly duplicate a Material in your model so you do not unintentionally affect another Material.

If you Duplicate a Material in your model, the Appearance Asset will be associated to the new Material AND the Material you copied it from! For example, in Figure 4-2.18, we will right-click on Carpet (1) and duplicate it. Before we duplicate it, notice the Appearance Asset named “RED” is not shared (arrow #3 Figure 4-2.18).

Once you have duplicated a Material, notice the two carpet materials, in this example, now indicate they both share the same Appearance Asset. Changing one will affect the other. Click the Duplicate this asset icon in the upper right (Figure 4-2.19).

Finally, when the Appearance Asset has been duplicated (Figure 4-2.20), you can expand the information section and rename the asset. You can now make changes to this material without affecting other materials.

This applies to all assets in a Material.
Adding or Replacing Assets

All of the *Assets*, except *Graphics* and *Identity* (which are not assets), can be replaced with another option from the provided library, called the *Asset Browser*. Additionally, the *Physical* and *Thermal* assets can be deleted.

If the asset already exists, but you want to change it, click the “Replace” icon shown in Figure 4-2.21. This will open the *Asset Browser*, from which you can choose a different *Asset* (Figure 4-2.22). The *Asset’s* properties are hard-wired in the libraries and not directly editable until loaded into a project.

Clicking the icon pointed out in Figure 4-2.22 (item # 2) will push the Asset into the currently selected *Material*.

If your *Material* does not have a *Physical* or *Thermal* asset, in the *Material Browser* you use the *Add Asset* icon option shown in Figure 4-2.23. This too will open the *Asset Browser*.

An asset can be associated with multiple *Materials*. For example, several materials may be based on the same *Physical* asset such as “Pine – Southern”. Keep in mind, however, if the asset is adjusted, this will affect all the materials which use it. If a different version were needed, you would have to duplicate the asset before making changes. You will do this later in this chapter.

Figure 4-2.21 Replacing an asset

Figure 4-2.22 Asset browser dialog; choosing a physical asset

Figure 4-2.23 Accessing the asset browser
Materials Library
If the Material you want is not available in your project, in the Project Materials area of the Material Browser, you can either create one or load it from the AEC Materials library. If the Material you want exists in the library this is much faster than creating your own as it has all the assets, including Physical and Thermal, preloaded. FYI: To see the external materials below, you may have to click the icon shown as step 1 in Figure 4-2.24.

The search box at the top of the Material Browser actually searches both the materials in your project and the library (Figure 4-2.24). Notice there are six materials within the project which contain the word tile in the name AND there are several results, within several categories, below in the library.

It is possible to create a custom library here. The library can be stored on a server so multiple users may access it. Use the icon in the lower left to get started with a custom library.

To load a Material into your project from the library, simply double click on it.

Custom Information
The Custom Parameters button, at the bottom of the Material Browser, gives you access to a list of Material-based parameters in the project. These are user-created parameters used to track pretty much anything you want. One example might be the source distance to better manage which products are locally sourced for LEED accreditation. Clicking this button opens a separate dialog to view the custom parameters (Figure 4-2.25). It is too bad one cannot initiate the creation of a Material parameter from this dialog.

Conclusion
This has been a fairly thorough overview of Materials in Revit. In the next exercise you will apply some of these concepts to help reinforce the ideas recently put forth.
Exercise 4-3:
Revit Materials Concepts Applied – Part 1

This section will apply many of the concepts covered thus far. You will open the architectural starter project provided on the DVD and save it to your hard drive. Be sure to backup this file often as it is the file you will work on throughout this book.

Before we open Revit, we will cover a few technical points related to materials. Many materials are noted in drawings using abbreviations. The abbreviations used may vary slightly from firm to firm. A few standards exist and are generally good to follow. However, as long as the abbreviations used are defined within the Contract Documents, drawings or project manual, it is “legal” to use whatever you want. Below is an example of an Interior Design group’s abbreviations list (Figure 4-3.1). Keep in mind that other disciplines might have their own abbreviations list, which would be located in another section of the project. Using duplicate abbreviations between disciplines should be avoided. For example, CC means Cubical Curtain in the list below, so the Civil design group should not use CC to mean Concrete Curb on their drawings if at all possible.

ABBREVIATIONS

ACP	ACOUSTIC CEILING PANEL	EQ	EQUAL	
ACT	ACOUSTIC CEILING TILE	EXP	EXPANSION / EXPOSED	
AJD	ADJACENT	EX	EXISTING	
AF	ATHLETIC FLOORING	EXIST	EXISTING	
AFF	ABOVE FINISHED FLOOR	FAF	FLUID APPLIED FLOORING	
ALUM	ALUMINUM	FB	FABRIC	
AP	ACOUSTIC PANEL	FIN	FINISH	
AVT	ACOUSTIC WALL TREATMENT	FPR	FIBERGLASS REINFORCED PANEL	
BMU	BURNISHED MASONRY UNIT	GB	GRAB BAR	
BR	BUMPER RAIL	GL	GLASS	
CAB	CABINET	GRT	GROUT	
CC	CUBICAL CURTAIN	GT	GLASS TILE	
CJ	CONTROL JOINT	GYP	GYPSUM WALL BOARD	
CT	CERAMIC TILE	GBW	GYPSUM WALL BOARD	
CG	CORNER GUARD	HM	HOLLOW METAL	
CONC	CONCRETE	HPC	HIGH PERFORMANCE COATING	
CPT	CARPET (BROADLOOM/TL)	HPL	HIGH PRESSURE LAMINATE	
CR	CRASH RAIL	HR	HARD RAIL	
EJ	EXPANSION JOINT	HT	HEIGHT	
EM	ENTRY MAT	LF	LINEAR FEET (FOOT)	
EP	EPOXY	LN	LINOLEUM	
LCW	LINEAR WOOD CEILING	SQ FT	SQUARE FEET (FOOT)	
MET	METAL	SS	STAINLESS STEEL	
MTL	METAL	SSURF	SOLID SURFACE	
MISC	MISCELLANEOUS	ST	STAIN	
NA	NOT APPLICABLE	STL	STEEL	
NIC	NOT IN CONTRACT	STN	STONE	
PERF	PERFORATED	SV	SHEET VINYL	
PHP	PHENOLIC PANEL	TH	THRESHOLD	
PLAS	PLASTIC LAMINATE	TS	TRANSITION STRIP	
PP	POLYMER PANEL	TYP	TYPICAL	
PPR	PREFINISHED	TXT	TEXTILE	
PT	PAINT	UNFIN	UNFINISHED	
QTS	QUARTZ SURFACING	UNLESS NOTED OTHERWISE	VCT	VINYL COMPOSITION TILE
QT	QUARTZ TILE	VSF	VERIFY IN FIELD	
RB	RESIDENT BASE	WOD	WALL COVERING	
RES	RESIN	WOOD		
RF	RESIDENTIAL FLOORING	WPO	WALL PROTECTION	
SOCONC	SEALED CONCRETE	WP	WALL PROTECTION	
SCT	SPECIALTY CEILING TILE	WT	WINDOW TREATMENT	

FIGURE 4-3.1 Abbreviation list for interior design drawings

Generally speaking, generic terms should be used rather than trademarked manufacturer terms. For example, drawings noting the construction of an interior wall or soffit should say “GYPSUM BOARD” rather than something manufacturer-specific such as DRYWALL or SHEETROCK. This helps to avoid confusion during bidding and construction, especially on publicly funded projects which require competitive bidding. That is, two or more manufacturers must be specified, not just the designer’s favorite choice, for better or worse. Having said that, sometimes the drawings list a specific product to be used as the benchmark for other manufacturers, or approved equals.

Next you will be creating a number of Materials in Revit and entering some of the descriptive data about them.
Creating Materials

Open Revit Architecture.

You will select a starter file from the DVD that came with this textbook.

1. Select **Open** from the *Quick Access Toolbar*.

2. Browse to the **Law Office.rvt** model located on the DVD.

3. Select **Manage tab ➔ Settings panel ➔ Materials**.

Next you will create a duplicate of the **Carpet(1) Material**. The easiest thing to do is first select a similar **Material** to the one you wish to create. In this case you are about to create a new **Material** to represent carpet, so you will be instructed to select an existing carpet material, existing in that it is already in the project, not in the sense of it already installed in the actual building.

4. In the **Project Materials** list, select **Carpet (1)**.

5. Right-click **Carpet (1)** and then click the **Duplicate** in the pop-up menu (Figure 4-3.2).

![Figure 4-3.2 Duplicating a material](image-url)
A new Material is created with a name similar to the original; Carpet (2). You will rename it.

6. **Rename Carpet(2) to CPT1**; you should be able to just select the text and change it. If you clicked off of the new material, you will need to right-click and select *Rename*.

7. Switch to the **Identity** tab for the new *Material – CPT1*; information shown will be entered in Step 13 (Figure 4-3.3).

Next you will go online and find the information needed to complete the *Material* definition for CPT1. Finding information such as this at the beginning of a project is not usually necessary. This could be information already saved in your Revit template file, if this is a specific product you regularly use in your designs.

Please refer to the following list for the next several steps. This list is similar to what one might find in a set of construction documents.

09 6800 - TILE CARPETING

CPT1 CARPET TILE 1
- **MFG:** INTERFACE FLOR
- **GROUP:** THE POND COLLECTION
- **STYLE:** COLOGNE (12420)
- **SIZE:** 20"X20" NOMINAL (50 CM X 50 CM)
- **COLOR:** 6363 PEAT
- **LOC:** PUBLIC SPACES

CPT2 CARPET TILE 2
- **MFG:** INTERFACE FLOR
- **GROUP:** THE POND COLLECTION
- **STYLE:** WEIMER (12421)
- **SIZE:** 20"X20" NOMINAL (50 CM X 50 CM)
- **COLOR:** 6688 PEAT
- **LOC:** OPEN OFFICE, PUBLIC ACCENT

CPT3 CARPET TILE 3
- **MFG:** INTERFACE FLOR
- **GROUP:** THE POND COLLECTION
- **STYLE:** WEIMER (12421)
- **SIZE:** 20"X20" NOMINAL (50 CM X 50 CM)
- **COLOR:** 6968 ACORN
- **LOC:** ACCENT

First you will focus on the carpet material CPT1, which is manufactured by Interface Flor.

8. Open your web browser; browse to http://www.interfaceflor.ca

9. Select your region, e.g. *Americas\United States*, and then hover over the *Products* link, and then click *Product Search* (Figure 4-3.4).

FYI: The website design may change; follow along as best you can.
10. In the “Find by Product Name” section select **Cologne** from the list (Figure 4-3.5).

11. Click **Find Tile**.

12. Find color **6363 (Peat)** as shown in Figure 4-3.6; click **View Details**.

You now have access to all the information you need to define the Revit **Material** (Figure 4-3.7).

13. In Revit, enter the information shown in Figure 4-3.3.
 a. Copy/Paste the website address for the current product page to the URL field in Revit.
 b. Click the small button to the right of the **Keynote** field and then select **09 68 00 Carpet** as shown in Figure 4-3.8).

 NOTE: You will learn more about keynoting later in the book.

As you can see on the webpage for this product, there is much more information available than Revit has built-in parameters for. That is why you are adding a web address (URL) to this information. However, as you will learn later, it is possible to add additional custom parameters in Revit.

14. Switch back to the **InterfaceFlor** website.

15. Under the preview image, click **More Actions ➔ Save Image** (Figure 4-3.7).
16. Click **Save** (or **Save As**).

Next you will switch to the **Appearance** tab and make some adjustments, and then come back to the **Graphics** tab.

Notice, on the **Appearance** tab (Figure 4-3.9A), that a PNG raster image is assigned to this material. You will download an image from the carpet manufacturer's website and then edit your **Material** to use this new image. Keep in mind that anyone who might work on the project needs access to the image file location. So, in an office environment, you would not want to save this file to your local hard drive.

TIP: You can set the path to the raster images via Application Menu ➔ Options ➔ Rendering. Do this on each user’s computer.
Next you will specify a name and location for the raster image you are about to save. Pay close attention to the drive and folders in which the file is saved. You will need to point Revit to this file location in a moment.

17. Browse to a location on your computer to save this image; name the image InterfaceFlor_Carpet__124206363.jpg.

You now have an image file which represents the specified carpet style available on your computer or network. You will assign this image to the Appearance asset. But first you will duplicate the Appearance asset because the one named “Red” (Figure 4-3.2) is not applicable.

18. Back in Revit, on the Appearance tab, click the Duplicate this asset icon (Figure 4-3.9a).

![Figure 4-3.9A Duplicating an appearance asset](image)

19. Expand the Information area and change the Name to CPT1 (see Figure 4-3.9b).

 a. You should also edit the Description and keywords.

You now have a new Appearance asset in your project named CPT1. This can be changed without affecting any other material.

20. In the Generic section, click on the file name link pointed out in Figure 4-3.10.

21. Browse to the image file saved in Step 17 above, select it and click Open.

![Figure 4-3.9B Editing an appearance asset](image)
Now, when using the Realistic or Ray Trace display styles OR doing a rendering, this image will be mapped to any surface which has been assigned the CPT1 Material. However, right now the carpet tiles will not be the correct size. You will adjust this next.

22. **To edit the image size:** on the Appearance tab, click directly on the image swatch located above the image name (i.e., the link you clicked on to change the image).

 F.Y.I.: Not the preview image at the top.

You are now in the Texture Browser dialog (Figure 4-3.11). Here you may adjust several settings related to the raster image.

At the moment, the edge dimensions are not equal, thus the image is being stretched. You will need to deactivate the “lock aspect ratio” feature so the two edge dimensions can be changed independently.

23. Click the chain icon pointed out in Figure 4-3.11.

Next you will adjust the Scale dimensions. Even though the project is set up for feet and inches, it is possible to enter metric values and Revit will automatically convert it. This is true anywhere you enter a length in Revit, other than the plain Text command. Interface happens to manufacture their carpet tile to a metric size so you will try this now.
24. Highlight the value listed next to Width and type: **50cm**.

25. Make the same change for Height.

26. Click **Done**.

27. Uncheck **Bump** on the Appearance tab.

The Bump mapping helps materials look more three-dimensional when rendered. However, the map is a grayscale image based on the main image file. This requires working on a copy of the image in another project such as Adobe Photoshop, which will not be done at this time.

28. Switch to the **Graphics** tab and check **Use Render Appearance** under Shading.

Notice how Revit automatically adjusts to the color to match the color of the raster image. This shading color is what is used for Shaded and Consistent Colors Display Styles.

You will leave the surface and cut patterns as they are for now. It should be pointed out that the image will not rotate as shown in the sample installation image on the website. To do this, one would have to use an image editing program to create the desired repeating pattern.

29. Using the steps just covered; create two more Materials for **CPT2** and **CPT3** as defined on page 4-24. Be sure to duplicate the Appearance asset each time.

FYI: When you duplicate CPT1 you save some typing (i.e. data entry) as all the values for the selected Material are also duplicated. However, you need to be careful and review everything so you do not leave incorrect information assigned to the new Material.

The process just covered will usually be the same for any carpet manufacturer, or any product manufacturer in general. The only challenge is some websites are easier to navigate than others, and raster images may not always be available or of good quality (i.e., resolution and size).

Next you will take a look at creating several paint sample materials. This will involve locating the specific paint color’s RGB color rather than a raster image. The RGB color can then be entered for shaded views as well as for rendered views.
Each paint manufacturer organizes their color information a little differently. We will take a look at the Sherwin-Williams website specifically. Often, the other paint manufacturer's sites will be similar. Be sure to check out the various color tools provided, such as the smartphone and Adobe Photoshop options. Below is the list of colors you will be working with:

09 91 00 - PAINTING AND COATING

PT1	PAINT 1 (WALLS)	COLOR: "BEIGE"	MFG: SHERWIN-WILLIAMS	SW0051 CLASSIC IVORY
PT2	PAINT 2 (INTERIOR HM DOORS & FRAMES / STEEL)	COLOR: "GRAY"	MFG: SHERWIN-WILLIAMS	SW7068 GRIZZLE GRAY
PT3	PAINT 3 (CEILINGS & SOFFITS, EXPOSED STRUCTURE)	COLOR: "WHITE"	MFG: SHERWIN-WILLIAMS	SW7007 CEILING BRIGHT WHITE
PT4	PAINT 4 (ACCENT WALL COLOR)	COLOR: "BROWN"	MFG: SHERWIN-WILLIAMS	SW6040 LESS BROWN
PT5	PAINT 5 (TOILET ROOMS)	COLOR: "BROWN"	MFG: SHERWIN-WILLIAMS	SW6093 FAMILIAR BEIGE

31. Choose your region.

32. Select USA → For Architects, Specifiers & Designers.

33. Click the Color Selection link.

Next you will search for the model number for the first paint type; PT1.

34. In the search box in the upper right, type SW0051 and then press Enter.

35. Click on the preview swatch for Classic Ivory to see more information.

You should now see the information shown below (Figure 4-3.12). Notice the RGB Value listed: 242,226,195. This is the Red, Green and Blue colors which make up the Classic Ivory color. This information can be entered into the Revit material to create the proper color representation. Next you will create the PT1 Material in Revit.
The paint material is a little more complicated than carpet in that the Revit Material will also represent the building material being painted. In Revit, the paint finish is applied to the face of the concrete block (CMU) or gypsum board (GWB). Therefore, you have to create a PT1 paint Material for both CMU and for GWB. This is due to the fact that each material has a different cut and surface pattern. This might make more sense after the next few steps.

37. Select the Material Gypsum Wall Board.

38. Duplicate the Material (via right-click) and then name it Gypsum Wall Board – PT1.

39. Also Duplicate the Appearance Asset and rename it PT1.

40. Fill out the Identity tab using the information from the website as shown in Figure 4-3.13.
41. Switch to the **Appearance** tab.

Next you will need to replace the *Appearance* asset with one specifically meant for paint. Currently it is set to *Generic* and not *Wall Paint* as pointed out in Figure 4-3.14.

42. Click the **Replace this asset** icon (Figure 4-3.14).

The *Asset Browser* has now opened (Figure 4-3.15). Here you need to select a *Wall Paint* asset and overwrite the *Generic* asset in the law office model.

All the *Wall Paint* assets provided are for specific colors, so we essentially need to duplicate one and rename it. However, the assets in the Autodesk libraries are not editable. So we need to load one into the project and then rename it. We will do this next.

43. In the *Appearance Library* list on the left, select *Wall Paint* (Figure 4-3.15).

44. Click the “load into project” icon for the *Beige* asset, or double-click the asset name.

The appearance asset should now be updated in your project. Next you will rename it. This can be done in the *Asset Browser*.

45. **Close** the *Asset Browser*.
46. Expand the **Information** area in the **Appearance** tab (Figure 4-3.16).

47. Change the **Name** **SW 0051 Classic Ivory**.

Now you can adjust the specific paint information for your **Material** (Figure 4-3.17). Keep in mind that this **Appearance** asset may be applied to other **Materials** in your project. For example, the asset could be applied to a CMU wall, or metal railing. Any adjustments made to the asset are instantly applied to all **Materials** which use it.

48. Click on the **RGB color numbers** to adjust them.

49. Change the RGB numbers as follows (Figure 4-3.18):
 a. R: 242
 b. G: 226
 c. B: 195

As you recall, the RGB value came from the paint manufacturer's website. The color swatch in Revit should look very similar to that shown on the website. Keep in mind that individual monitors and color printers can vary significantly in how they represent a color. It is always best to get a physical color sample before making final selections. But this will get you close!

50. Adjust the **Finish** option to **Eggshell**.

51. Adjust the **Application** option to **Roller**.
Notice how the Appearance options available vary from one material type to another. This allows you to control the real-world characteristics more accurately for a number of types or materials. This is more convenient than having all possible options when they do not really apply.

52. Switch to the Graphics tab.

53. Make sure the Use render Appearance under Shading is checked (Figure 4-3.19).

Notice how the RGB color matches the value you entered for the render Appearance. Again, the Appearance information is for Realistic & Ray Trace mode and used when creating photo-realistic renderings. The Shading information is used in plan, elevation and 3D views when the Visual Style is set to Shaded or Consistent colors.

Next you will set the cut pattern to None. It is not typically necessary to hatch this material (i.e. gypsum board) because it is not very thick (1/2" – 5/8" typically), so the pattern does not read well.

54. Set the Cut Pattern to None (Figure 4-3.19).

55. Repeating the steps just covered; create a material for PT2 through PT5 as shown on page 4-29.
 a. PT2 should be duplicated from Steel, Paint Finish, Ivory, Matte in AEC Materials library.
 b. PT3 should be duplicated from Gypsum Ceiling Board.
 c. PT4 & PT5 should be duplicated from PT1.

56. Remember to Save your project often to avoid losing work.

Figure 4-3.19 Material Browser; Graphics tab
Exercise 4-4:
Revit Materials Concepts Applied – Part 2

We will continue to develop several real-world materials in Revit Architecture.

09 30 00 - TILING
CT1 CERAMIC TILE 1 (SHOWER WALL TILE)
 MFG: DAL TILE
 STYLE: MATTE WALL TILE
 SIZE: 4-1/4" X 4-1/4" NOMINAL
 COLOR: X735 ALMOND
 GROUT: 944 LIGHT CHOCOLATE (RGB = 99, 77, 61)

CT2 CERAMIC TILE 2 (SHOWER CEILING TILE)
 MFG: DAL TILE
 STYLE: SEMI-GLOSS WALL TILE
 SIZE: 4-1/4" X 4-1/4" NOMINAL
 COLOR: 0190 ARCTIC WHITE
 PATTERN: INSTALLED AT 45 DEGREES ON SHOWER CEILINGS
 GROUT: 44 BRIGHT WHITE (RGB = 248, 248, 248)

PRT1 PORCELAIN TILE 1 (FLOOR TILE)
 MFG: DAL-TILE
 STYLE: CITY VIEW
 SIZE: 18" X 18" NOMINAL
 COLOR: CY04 DOWNTOWN NITE
 GROUT: TEC 927 LIGHT PEWTER (RGB = 126, 128, 130)

PRT2 PORCELAIN TILE 2 (WALL BASE TILE)
 MFG: DAL-TILE
 STYLE: CITY VIEW
 SIZE: 6" X 12" NOMINAL COVE BASE
 COLOR: CY04 DOWNTOWN NITE
 GROUT: TEC 927 LIGHT PEWTER (RGB = 126, 128, 130)

The third material you will create is tile; both ceramic and porcelain. This is similar to the previous examples, except you will set up a surface pattern for the size tile to be used and also deal with entering a color when the RGB color is not directly available. The materials you will create are listed above.

1. Open the Material Browser dialog in Revit.

2. Filter the material list by Class Ceramic; click the down arrow as shown in Figure 4-4.1.

You should see two materials; “Ceramic Tile – 4” Blue” and “Porcelain, Ivory”.

FIGURE 4-4.1 Filter materials by class
First you will create a ceramic tile *Material* called CT1. Similar to the floor finish you created for carpet, you will not worry about the floor construction. The floor finishes will be applied differently than how the wall finishes are applied. The main reason for this is to show two ways in which materials may be applied. We will discuss this more in the chapters dealing with modeling.

3. Select **Ceramic Tile – 4” Blue** and **Duplicate** it via right-click.

4. Rename the new **Material** to **CT1**.

5. With the new **Material** selected, switch to the **Identity** tab.

Next you will go to the Dal Tile website and search for the specific tile under consideration. You will find on this specific website that each tile does not have its own page. Thus, the URL will have to either point to the main website or the page for the series of the selected tile.

7. In the search box enter **X735**.

8. Click on the word **Matte**, above the **Matte** tile preview.

9. Use the current web page address for the **Material URL** in Revit.

10. Find the X735 tile sample (click on it).

Notice there is not a lot of information about the tile here. You have to go elsewhere to find the size of the tile. Also, the RGB color is not given. One technique to derive the RGB color is to right-click on the image on the website, select **Save Picture As** and then save the preview image to a file on your computer’s hard drive. Next you could open this image in an image editing program such as Adobe Photoshop and use the **Color Picker** tool to list the RGB values of the image. You will be provided the RGB colors so you do not need to use another program at this time.

11. Finish entering the information on the **Identity** tab as shown in Figure 4-4.2.
Note that the *Class* being set to *Ceramic* on the *Identity* tab (Figure 4-4.2) only relates to which category the *Material* is listed under in the *Material Browser*, and does not directly relate to the actual material assigned on the *Appearance* tab. However, you should make sure they match so there is no contradiction.

12. Switch to the **Graphics** tab.

13. Make sure **Use Render Appearance** under *Shading* is not checked.

14. Click the color swatch to adjust the RGB color.

15. Set the RGB color to R=231, G=220, B=202 (similar to Figure 4-3.17).

16. Click the *Surface Pattern* preview, select the *Model* option, and then select **4.25" Tile**. Click **OK** to close the *Fill Patterns* dialog.

17. Set the *Cut Pattern* for the tile to **None** (Figure 4-4.3); click the preview and then click the **No Pattern** button.

With these settings one could begin to design using the CT1 material. However, the *Appearance* tab does not have a proper image file selected to represent the selected tile. It is still set to the blue tile.

Because we do not have a representative image with a repeating grout pattern to download, you have to either find one in the *Autodesk Library*, modify a material, take a picture of the tile installed somewhere or find something online.

18. Switch to the **Appearance** tab.

19. Duplicate the *Appearance Asset* and rename it **CT1** (Steps 1 & 2; Figure 4-4.4).

Notice this material is currently using an image file to represent the tile (Figure 4-4.4). This would be similar to taking a photo of an installed tile and then cropping it so that it repeats nicely. In the next few steps you will take a look at another option for representing tile.

20. Click the down-arrow to the right of the image preview (Step 3; Figure 4-4.4).
21. Select **Tiles** from the list.

Revit still understands this material to be “ceramic” but rather than using an image, it is now using a “synthetic” tile pattern. The appearance asset is synthetic in that it is computer generated. As you will see in a moment, this provides the designer with the tools to quickly create a tile pattern when an image file is not available.

You are now in the *Texture Editor* shown in Figure 4-4.5. Here you can adjust all sorts of settings related to how the tile pattern should appear. One of the adjustments one can make is the tile pattern. Is the pattern stack bond, running bond, common flemish bond, etc. You can even adjust the grout color and size.

This method can be used for many other materials such as sidewalks. For sidewalks, the number of rows can be set to zero and the column set to be about 5'-0” or whatever spacing you want.

22. Make the adjustments shown in Figure 4-4.5.

23. Click **Done** to exit the Texture Editor.

FYI: The grout types listed are manufactured by TEC. If interested, you can visit their website at www.tecspecialty.com. Look for AccuColor® Premium Unsanded Grout (Cementitous Grout).
The Material Browser dialog below shows one of the other options shown in Figure 4-4.4. This is the Checker option where you can select two separate colors. This can be used for an entire wall or in an accent area (Figure 4-4.6). Be sure to explore the other options, such as Wood, which can be used to represent wood or other things such as art glass.
A Relief Pattern would be like embossing a piece of paper. In the raster image currently being used (TileSquareBump.png in this case) the non-white areas are embossed on the otherwise flat/infinite ceramic material. This Relief Pattern gives the general appearance of a tile pattern.

24. Switch the Relief Pattern to a Tile pattern, similar to steps 20 and 21.

25. Adjust the settings to match Figure 4-4.7.

Notice the other options, including the ability to rotate the pattern.

26. Click Done.

27. Switch back to the Graphics tab.

28. Click the Texture Alignment button.

This can be used to make sure the surface pattern and the appearance pattern align.

29. Click the arrows if necessary to make the fill pattern align with the render appearance pattern (Figure 4-4.8).

30. Click OK to close the Material Browser.
The following two images in Figure 4-4.9 highlight the difference in a rendered image when the Relief Pattern is used, as seen in the example on the left, and when one is not, on the right. The Relief Pattern actually gives the material a three-dimensional look. The lighting in the space is actually in sync with the Relief Patterns as well. Notice how the shade and highlights correspond with the lighting primarily coming from the top right in the image on the left. The image on the right is flat and void of any shading or highlights at the edge of the tiles.

![Figure 4-4.9 Rendered material with Relief Pattern on left, and without on right](image)

Now you will create another ceramic tile pattern using CT1 as a starting point.

31. Create Material CT2
 a. Duplicate CT1 via a right-click
 b. Rename to CT2

32. Switch to the Graphics tab.

33. Use the following RGB values for shading:
 R=244, G=240, B=237.

Next you will adjust the Surface Pattern so it is rotated 45 degrees.

34. On the Graphics tab, click the pattern preview next to Surface Pattern.

35. Set the Pattern Type to Model and then click the New button.

36. Adjust the settings to match Figure 4-4.10; enter the Name 4.25" Tile at 45 Degrees.

![Figure 4-4.10 Add Surface Pattern dialog](image)
37. Click **OK** to create the new model pattern. Remember, model patterns do not change size when the view scale is changed for a given view.

This new *Fill Pattern* is now available to any tool or feature which utilizes the fill patterns.

38. In the Fill Pattern dialog, click **OK** to accept the new pattern for the material’s *Surface Pattern*.

39. Switch to the *Appearance* tab.

Before making any changes to the *Appearance* asset you need to understand that the *Material* you just copied (i.e. CT1) is using the same asset. Revit reminds you of this by the icon pointed out in Figure 4-4.11; it indicates that this asset is shared with one other material. So if you rotate the *Appearance* asset for CT2, it will also change CT1. In the next few steps you will rename the *Appearance* asset, and notice how both materials are affected. Then you will duplicate the *Appearance* asset and assign the new one to CT2.

![Figure 4-4.11 Material Browser; shared appearance asset icon](image)

40. Expand the *Information* section, on the *Appearance* tab, and change the *Name* to **CT2**.

41. Switch between *Materials* CT1 and CT2 and notice they both have this newly renamed *Appearance* asset assigned to them.
Next you will duplicate the *Appearance* asset for CT2 and correct the name for CT1.

42. In the *Material Browser*, select **CT2**.

43. On the *Appearance* tab, click the “Duplicate this asset” icon (Figure 4-4.12).

44. Switch over to the **CT1 Material** and rename the *Appearance* asset back to CT1.

45. Now switch back to *Material* CT2 and rename the *Appearance* asset CT2(1) to **CT2**.

You now have a new *Appearance* asset called CT2 which can be applied to multiple *Materials* if needed. Changing it in one place changes it in all locations.

46. Adjust the rotation of *Ceramic* and *Relief Pattern* to **45** degrees (Figure 4-4.13).

47. Adjust the RGB color for the ceramic to **R=244, G=240, B=237**

48. Switch back to the **Graphics** tab.

49. In the *Surface Pattern* area, click the *Texture Alignment* button.

50. Notice that the *Surface Pattern* and the render texture, i.e., appearance, both align. Try clicking the arrows, but click **Cancel** to close without making changes.

51. Click **OK** to close the *Material* dialogs.

52. **Save** your project.

Your *Material* preview should look like that shown in Figure 4-4.14 to the right.
Next you will create the last two tile materials.

53. In the Materials dialog, select CT1 and then Duplicate it; name the new material PRT1.

54. Adjust the Identity information per the steps previously covered to create the ceramic materials; see page 4-35.

55. Switch to the Graphics tab.

56. Check Use Render Appearance for Shading.

57. Click the Surface Pattern preview area.

58. Set the Pattern Type to Model and then click New.

59. Create a new pattern named 18" Tile; adjust the settings to match Figure 4-4.15.

60. Click OK twice to get back to the Material Browser.

Next you will modify the Appearance tab. But first you might want to review the Texture Alignment to see how things do not currently align.

61. Switch to the Appearance tab.

You will notice from the manufacturer’s website that the selected porcelain tile is not a simple solid color. It has a natural irregular pattern to it. So you might not want to use the same appearance previously applied to CT1 and CT2. Next you will download an image from the manufacturer’s website.

62. Go to www.daltile.com and search for tile number CY04.

63. Select the small preview image to open a larger preview image (Figure 4-4.16).
64. Right-click on the large preview image and select **Save Picture As** (or **Save Image As**).

65. Select a location for the image file to be saved on your computer.

The only problem with this image is it does not have a grout joint around the perimeter. This will not look great in a rendering; due to the irregular pattern a line will still be apparent. It is possible to use an image editing program, such as Adobe Photoshop, to correct the problem. To add the joint, you would want half a joint so it tiles, or repeats, properly on a surface in the model. You will not be required to make these types of edits at this time.

66. **Duplicate** the **Appearance** asset, and rename the new copy to **PRT1** (similar to step 43).

67. Back in the **Material Browser**, with PRT1 selected, adjust the **Description** as shown in Figure 4-4.17.

Next you will change the **Appearance** asset to use an image rather than the “synthetic” **Tiles**.

68. Select the down-arrow to the right of the **Tiles** preview and select **Image** (Figure 4-4.17).

You now have a raster image file based **Appearance**. You will change it to the image you just downloaded.

69. Browse to the raster image of the CY04 tile you saved from the Daltile website.
70. The Texture Editor opens automatically; if you need to open it again later, click on the image preview, in the Material Browser.

71. In the Texture Editor, change the Sample Size to 3'-0"x3'-0"; this is for two 18" tiles in each direction (Figure 4-4.18).

72. Click Done to close the Texture Editor.

Now you need to adjust the Relief Pattern. This will remain the “synthetic” Tiles option. You will adjust the spacing to align with the grout joints in the image. You will also make an adjustment so the joint does not look too deep.

73. Edit the Relief Pattern as follows:
 a. Set the Sample Size to 3'-0"
 b. Set the Grout Color to R=125, G=125, B=125

Note that the raster image and the relief pattern are both setup to show full tiles. If this were not the case you would need to offset the relief pattern to align with the image.

To better visualize the changes you are making, it is possible to adjust the preview image to be larger and to represent a wall.

74. Click the down-arrow next to the material preview and select Walls (Figure 4-4.19).

75. Adjust the preview size by dragging the width of the dialog box (to adjust the width) and the horizontal line just below the image (to adjust the height).

You now have a larger image which looks like a wall to better visualize your material. Notice how the grout joint does not appear to be as deep. In the Relief Pattern, the darker the graphics, the deeper the relief appears in those areas in the material. Therefore, when we make the grout lines a lighter grey, the appearance became less recessed.
Next you will duplicate PRT1 to create PRT2. Both are based on the same tile. One is for
the floor and the other is meant to be used as wall base. The wall tile is 6”x12”. This can be
set up as 12”x12” as the tile will be cropped by the surface it is applied to in the model. That
is, PRT2 will only be used as a wall base and only applied to an area that is six inches tall.

76. Duplicate PRT1 as **PRT2**.

77. Adjust the *Identity* tab.
 a. *Comments*: PORCELAIN WALL BASE TILE
 b. *Mark*: PRT2 *Remember to always set this value when duplicating a material*
 c. Everything else is the same as PRT1.

78. On the *Graphics* tab, set the *Surface Pattern* to **12” Tile**.

79. On the *Appearance* tab, duplicate the asset and then adjust the texture size to be **2’x2’**;
this is for two 12” Tiles.
 a. Do this for both the image and the relief pattern.

80. Close the *Materials* dialog; be sure to click the **OK** button and not the red “X” in the
upper right as this will cancel and discard your changes.

81. **Save** your project file. You will use this model in subsequent chapters.

You should save all the image files you create or download into a single folder if possible. If
working in an office, the folder should be on a network, accessible to everyone on the design
team. In Revit, everyone can go to *Application Menu → Options → Rendering* and add
“additional render appearance paths” so Revit knows where the images are located and can
access them when needed.

This wraps up a fairly thorough overview of using and managing *Materials* in Revit. You
should hang on to this book so you can refer back to this information as needed. Eventually,
you will know how to do these steps by memory as there are lots of materials on projects.
Keep in mind that your favorite materials can be added to a custom template file or custom
material library so they are available immediately for all your projects.
Exercise 4-5:
Revit Materials and Custom Parameters

This last section will look at an intermediate concept related to Revit materials. Often there is additional information you might wish to keep track of for a given material. Revit allows you to create custom parameters which are able to hold additional information about the material. It is not essential that you know how to do this now, but it is easy so why not give it a try!

You may have noticed some of the websites you visited in this chapter list data like **Post-Consumer Content**. You may also want to keep track of the distance in miles to the main source of the material. These metrics are used to rate the sustainability of a building and factor in to programs such as **Leadership in Environmental and Energy Design** (LEED).

1. In Revit, switch to the **Manage** tab on the Ribbon.
2. Select **Project Parameters**.
3. Click **Add**.
4. Enter the information as shown in Figure 4-5.1 below.

![Parameter Properties](image)

FIGURE 4-5.1 Creating a project parameter

5. Click **OK** to create the parameter.
6. Add another project parameter called **Source (miles)** with all other settings the same as the previous steps.

7. Click **OK** and then click **OK** again to close the *Project Parameters* dialog.

8. Open the *Materials* dialog, open the *Material Browser* if not already open.

9. Click the **Custom Parameters** button in the lower left (Figure 4-5.2).

10. Add the information shown in Figure 4-5.2.

Notice the custom parameters area associated with every *Material* – be sure the correct *Material* is selected before editing the *Custom Parameters*. You are able to add as many custom parameters as you need. This information can also appear in a schedule; you will learn more about schedules later in the book.

FIGURE 4-5.2 Custom material parameters in the *Materials* dialog
Self-Exam:
The following questions can be used as a way to check your knowledge of this lesson. The answers can be found at the bottom of this page.

1. To control the extents of the *Paint* tool on a face, use the *Split Face* tool. (T/F)
2. A material cannot store information about the manufacturer. (T/F)
3. It is not possible to rotate a surface pattern. (T/F)
4. Not all render appearance materials tile properly. (T/F)
5. You can store custom information in a Revit material. (T/F)

Review Questions:
The following questions may be assigned by your instructor as a way to assess your knowledge of this section. Your instructor has the answers to the review questions.

1. To change a material “*By Face*” use the *Paint* tool. (T/F)
2. You can only duplicate materials, not start from scratch. (T/F)
3. A material’s surface pattern is what would be seen in an interior elevation. (T/F)
4. List three primary ways materials are added: by ________, by __________, by ____________.
5. For a render appearance, a relief pattern would be like embossing a piece of paper. (T/F)
6. The glass material is transparent in 3D but not in elevation. (T/F)
7. The *Identity* tab, in the *Materials* dialog, has a section for shading adjustments. (T/F)
8. Revit does not come with any *Materials*. (T/F)
9. Model *Fill Patterns* adjust size when the view scale changes. (T/F)
10. When a 3D element has its material parameter set to <by category>, the ____________ ____________ material is used.

SELF-EXAM ANSWERS:
1 – T, 2 – F, 3 – F, 4 – T, 5 – T